Lingkaran
Loncat ke navigasi
Loncat ke pencarian
Elemen-elemen suatu lingkaran.
Dalam
geometri Euklid, sebuah
lingkaran adalah himpunan semua
titik pada
bidang dalam jarak tertentu, yang disebut
jari-jari, dari suatu titik tertentu, yang disebut
pusat. Lingkaran adalah contoh dari
kurva tertutup sederhana, membagi bidang menjadi bagian dalam dan bagian luar.
Istilah dalam lingkaran
Beberapa istilah geometri mengenai lingkaran, yaitu:
- Istilah yang menunjukkan titik, yaitu:
- Titik pusat (P)
merupakan titik tengah lingkaran, di mana jarak titik tersebut dengan titik manapun pada lingkaran selalu tetap.
- Istilah yang menunjukkan garisan, yaitu:
- Jari-jari (R)
merupakan garis lurus yang menghubungkan titik pusat dengan lingkaran.
- Tali busur (TB)
merupakan garis lurus di dalam lingkaran yang memotong lingkaran pada dua titik yang berbeda.
- Busur (B)
merupakan garis lengkung baik terbuka, maupun tertutup yang berimpit dengan lingkaran.
- Keliling lingkaran (K)
merupakan busur terpanjang pada lingkaran.
- Diameter (D)
merupakan tali busur terbesar yang panjangnya adalah dua kali dari jari-jarinya. Diameter ini membagi lingkaran sama luas.
- Apotema
merupakan garis terpendek antara tali busur dan pusat lingkaran.
- Istilah yang menunjukkan luasan, yaitu:
- Juring (J)
merupakan daerah pada lingkaran yang dibatasi oleh busur dan dua buah jari-jari yang berada pada kedua ujungnya.
- Tembereng (T)
merupakan daerah pada lingkaran yang dibatasi oleh sebuah busur dengan tali busurnya.
- Cakram (C)
merupakan semua daerah yang berada di
dalam lingkaran. Luasnya yaitu jari-jari kuadrat dikalikan dengan pi.
Cakram merupakan juring terbesar.
Persamaan
Suatu lingkaran memiliki persamaan
dengan
adalah jari-jari lingkaran dan
adalah koordinat pusat lingkaran.
Jika pusat lingkaran terdapat di
, maka persamaan di atas dapat dituliskan sebagai
Bentuk persamaan lingkaran dapat dijabarkan juga menjadi bentuk
dengan
adalah jari-jari lingkaran dan
adalah koordinat pusat lingkaran. Bentuk persamaan tersebut dikenal sebagai bentuk umum persamaan lingkaran.
Persamaan parametrik
Lingkaran dapat pula dirumuskan dalam suatu
persamaan parameterik, yaitu
yang apabila dibiarkan menjalani
t akan dibuat suatu lintasan berbentuk lingkaran dalam ruang
x-y.
Luas lingkaran
Luas lingkaran memiliki rumus
yang dapat diturunkan dengan melakukan integrasi elemen luas suatu lingkaran
dalam koordinat polar, yaitu
Dengan cara yang sama dapat pula dihitung luas setengah lingkaran,
seperempat lingkaran, dan bagian-bagian lingkaran. Juga tidak
ketinggalan dapat dihitung luas suatu cincin lingkaran dengan jari-jari
dalam
dan jari-jari luar
.
Penjumlahan elemen juring
Luas lingkaran dapat dihitung dengan memotong-motongnya sebagai
elemen-elemen dari suatu juring untuk kemudian disusun ulang menjadi
sebuah persegi panjang yang luasnya dapat dengan mudah dihitung. Dalam
gambar
r berarti sama dengan
R yaitu jari-jari lingkaran.
Luas juring
Luas juring suatu lingkaran dapat dihitung apabila luas lingkaran dijadikan fungsi dari
R dan
θ, yaitu;
dengan batasan nilai
θ adalah antara
0 dan
2π. Saat
θ bernilai
2π, juring yang dihitung adalah juring terluas, atau luas lingkaran.
Luas juring adalah
atau
Luas tembereng
Luas tembereng = Luas juring - Luas segitiga sama kaki.
Luas cincin lingkaran
Suatu cincin lingkaran memiliki luas yang bergantung pada jari-jari dalam
dan jari-jari luar
, yaitu
di mana untuk
rumus ini kembali menjadi rumus luas lingkaran.
Luas potongan cincin lingkaran
Dengan menggabungkan kedua rumus sebelumnya, dapat diperoleh
yang merupakan luas sebuah cincin tak utuh.
Keliling lingkaran
Keliling lingkaran memiliki rumus:
Panjang busur lingkaran
Panjang busur suatu lingkaran dapat dihitung dengan menggunakan rumus
yang diturunkan dari rumus untuk menghitung panjang suatu kurva
di mana digunakan
sebagai kurva yang membentuk lingkaran. Tanda
mengisyaratkan bahwa terdapat dua buah kurva, yaitu bagian atas dan
bagian bawah. Keduanya identik (ingat definisi lingkaran), sehingga
sebenarnya hanya perlu dihitung sekali dan hasilnya dikalikan dua.
Panjang busur adalah
atau r
Sumber: https://id.wikipedia.org/wiki/Lingkaran
0 komentar: